top of page

Why Lakehouse Maintenance in Microsoft Fabric Is Business-Critical—and How to Automate It for ROI

  • Exult Global
  • May 26
  • 2 min read



Enterprises Are Drowning in Data—But Not All of It Adds Value 


If you're managing data pipelines, dashboards, or analytics projects at scale, you've seen the warning signs: 

  • Queries getting slower by the week 

  • Tables duplicated across workspaces 

  • Mysterious failures in Power BI refreshes 

  • Skyrocketing Fabric Capacity Unit (CU) costs 

 

Welcome to Lakehouse sprawl—a silent but growing operational tax on modern data estates. 

The solution? Automated, intelligent Lakehouse maintenance powered by Microsoft Fabric, Semantic Link Labs, and governance frameworks from XYZ Global.


The High Costs of Neglected Lakehouses 

Risk Area 

Impact 

Orphaned & Redundant Data 

Storage waste, Fabric CU cost spikes, user confusion 

Slow Query Performance 

Poor decision agility, stakeholder frustration, report delays 

Lack of Data Lineage 

Failed audits, compliance risk, “don’t trust the numbers” syndrome 

Workflow Fragility 

Broken pipelines, unmonitored schema drift, dashboard failures 


What Smart Lakehouse Maintenance Looks Like in Fabric 

 

Regular audits aren’t enough. You need automated, policy-driven, AI-supported maintenance integrated into your Fabric governance lifecycle. 

 

1. Table Lifecycle Automation 

  • Archive or delete stale tables (based on last query date, CU usage, row count) 

  • Auto-tag "orphaned" datasets (not referenced in any active report or pipeline) 


2. Metadata + Lineage Monitoring with Purview 

  • Track schema changes across workspaces 

  • Visualize upstream/downstream impacts for every table 

  • Embed lineage views inside Power BI for contextual trust 


3. Semantic Link Labs Dashboards 

  • Table health scores 

  • Redundancy reports (by name similarity + schema fingerprint) 

  • Time-series lineage graphs 


4. CU Optimization Engine

  • Analyze over-partitioning and unused snapshot files 

  • Automate migration of cold datasets to Azure Data Lake storage tiers 

  • Power Automate + Copilot to suggest clean-up or reconfigurations



XYZ Global’s Lakehouse Maintenance Blueprint


We help enterprises move from firefighting to foresight with our Fabric-native approach: 

Maintenance Area 

Our Solutions 

Schema Integrity 

- Auto-alert on schema drift - Dynamic validation rules for lakehouse workloads 

Data Cleanup 

- Set custom retention rules - Schedule auto-compaction & refresh hierarchy maintenance 

Governance & Access 

- Role-based access + sensitivity labeling - DLP enforcement via Purview 

Cost Control 

- Fabric CU heatmaps - Capacity tiering workflows - Reallocate based on usage patterns 



Real-World ROI from Smart Lakehouse Maintenance 

Industry 

Use Case 

ROI Outcome 

Insurance 

Power BI Refresh Failures 

Reduced failure rate from 12% → 0.5% after lineage auto-mapping 

Manufacturing 

Fabric CU Overruns 

Saved $72K/year by deleting 8TB of unused snapshots + re-tiering workloads 

Pharma 

FDA Audit-Readiness 

Enabled full dataset lineage visualization across 6 departments in 2 weeks 


 

What About Copilot & AI? 

 

Poor-quality Lakehouse = Misleading AI = Eroded Trust 

 

Fabric Copilot only works optimally when grounded in certified, governed datasets.  

Maintenance is the #1 enabler of explainable, compliant, and accurate AI in enterprise Fabric deployments. 

 

Automate Before You Accumulate!

📞 Book a free consultation with Exult Global’s Lakehouse & AI experts


Visit us at www.exultglobal.com

Call us at +1 (949) 761-3012


 
 
 

Comentarios


bottom of page